Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.

نویسندگان

  • Eamon J Sheehy
  • Tariq Mesallati
  • Tatiana Vinardell
  • Daniel J Kelly
چکیده

Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered grafts for endochondral bone regeneration. In this study, we compared the capacity of different naturally derived hydrogels (alginate, chitosan and fibrin) to support chondrogenesis and hypertrophy of MSCs in vitro and endochondral ossification in vivo. In vitro, alginate and chitosan constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG), with chitosan constructs synthesizing the highest levels of collagen. Alginate and fibrin constructs supported the greatest degree of calcium accumulation, though only fibrin constructs calcified homogeneously. In vivo, chitosan constructs facilitated neither vascularization nor endochondral ossification, and also retained the greatest amount of sGAG, suggesting it to be a more suitable material for the engineering of articular cartilage. Both alginate and fibrin constructs facilitated vascularization and endochondral bone formation as well as the development of a bone marrow environment. Alginate constructs accumulated significantly more mineral and supported greater bone formation in central regions of the engineered tissue. In conclusion, this study demonstrates the capacity of chitosan hydrogels to promote and better maintain a chondrogenic phenotype in MSCs and highlights the potential of utilizing alginate hydrogels for MSC-based endochondral bone tissue engineering applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering osteochondral constructs through spatial regulation of endochondral ossification.

Chondrogenically primed bone marrow-derived mesenchymal stem cells (MSCs) have been shown to become hypertrophic and undergo endochondral ossification when implanted in vivo. Modulating this endochondral phenotype may be an attractive approach to engineering the osseous phase of an osteochondral implant. The objective of this study was to engineer an osteochondral tissue by promoting endochondr...

متن کامل

Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation

Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossificatio...

متن کامل

Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx

Novel strategies are urgently required to facilitate regeneration of entire bones lost due to trauma or disease. In this study, we present a novel framework for the regeneration of whole bones by tissue engineering anatomically shaped hypertrophic cartilaginous grafts in vitro that subsequently drive endochondral bone formation in vivo. To realize this, we first fabricated molds from digitized ...

متن کامل

In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration

Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...

متن کامل

Employing the biology of successful fracture repair to heal critical size bone defects.

Bone has the natural ability to remodel and repair. Fractures and small noncritical size bone defects undergo regenerative healing via coordinated concurrent development of skeletal and vascular elements in a soft cartilage callus environment. Within this environment bone regeneration recapitulates many of the same cellular and molecular mechanisms that form embryonic bone. Angiogenesis is inti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015